
Dynamic	Searchable	Symmetric	Encryption

DSSE

INTRODUCTION	TO	CYBER 	SECURITY

ESTR 	4306 	| 	 L IU 	Y ICUN



Motivating	Problem
The clients want a encrypted database which can update dynamically.

The clients want to do the updates without re-encrypting the whole data
base.

The updates should affect the previous DB as less as possible.

Queries and updates are supposed to reveal as less information as possible.

Efficiency vs. Functionality



Abstract	Idea	of	“Dynamic”
Additions:
◦ Edge Addition: Simple. Just add edge (x, y) into the DB, noted that node x
and y have already existed.

◦ Node Addition: Based on edge addition. Add a set of new edges (·, y)
connecting node y. The client need to keep all edges connecting node y in
mind.

Deletions:
◦ Edge Deletion: Just remove (x, y). Simple, but unrealistic for massive deletion.

◦ Node Deletion: Client give the name of the node y to the server. The server
do the rest of the job. Server traverses (·, y) and deletes all these edges.



Notations



General	DSSE	
Bipartite	graphs	defined	by	the	spaces	X,	Y,	and	W.

◦

◦
ü :	Generate	a	query	token	

ü :	Return	the	result	R	of	the	query.	Update	EDB.

◦



Forward	Privacy
Example:	The	client	adds	a	new	edge	(	x,	y,	w).	The	server	might	be	able	to	
tell	that	this	new	edge	is	connecting	to	node	x,	using	the	previous	query	
result	on	x.

“Forward	Privacy”	was	previously	discussed	in	[SPS14,	RG15],	however	it	is	
captured	by	the	leakage	function	when	query.

Captured	by						could	be	problematic:	in	our	example,	the	criterion	to	
determine	whether	forward	privacy	has	been	achieved	happens	in	updates,	
but	not	queries!

Our	definition:	based	on	update	leakage	function		



Forward	Privacy
◦ Half-forward	Privacy:

Addition	of	edge	(x,	y)	doesn’t	reveal	both	x	and	y.	Hide	one	end.

◦ Fully-forward	Privacy:

Addition	of	edge	(x,	y)	doesn’t	reveal	either	x	and	y.	Hide	both	ends.



Forward	Privacy
◦ A	more	comprehensive	definition	of	Forward	Privacy:	

Based	on	the	update	leakage	function

◦ Previously	defined	half	forward	privacy	can	be	represented	as	

◦ Previously	defined	fully	forward	privacy	can	be	represented	as	



Forward	Privacy	for	Any	DSSE
◦ DSSE	scheme						(implemented	before)

◦ Each	query	has	a	table	of	PRF	(deterministic)	keys								and	counters						.

◦ Plaintext	bipartite	graph					and	ciphertext bipartite	graph				

(to	be	achieved	by	an	efficient	data	structure).

◦ Dictionary	(or	table)								:	

Maps	a	query																		to	a	PRF	key							and	counter					.

◦ Idea:	locally	maintain	the	table							.



Setup

1. The dictionary and the plaintext graph are set
to be empty.

2. The returned K contains the key and the
dictionary. Both the EDB and the plaintext graph
are returned.



Addition:	UpdateToken

u	=	(Add,	x,	y,	w	)	sent	by	the	client,	means	adding	a	
new	edge	(x,	y).

Case	1:	if	node	x	is	a	singleton,	generate	the	PRF	key	
and	set	counter	as	1.

Case	2:	if	node	x	is	not	a	singleton,	counter	+	1.

Then	generate	the	UpdateToken for	addition.



Addition:	Update

Simple,	using	the	already	generated	updated	token,	and	update	the	EDB.



Deletion:	UpdateToken
u	=	(Del,	x,	*,	*	)	sent	by	the	client,	means	deleting	all	
edges	connecting	node	x.

More	complex	than	addition,	cause	more	edges	to	
deal	with.

Case	1:	if	node	x	is	a	singleton
1. Get	the	PRF	key,	know	the	counter.	Then	set	

dict[x]	empty.
2. Generate	DeleteToken for	each	edges
3. Encapsulate	them	into	an	UpdateToken

Case	2:	if	node	x	is	not	a	singleton,	UpdateToken =	
empty



Deletion:	Update
Here	we	already	have	a	update	token,	which	
contains	all	deletion	tokens	of	edges	(x,*).

1. Delete	all	the	edges	in	plaintext	graph.

2. Delete	all	the	edges	in	EDB.

Here we only discuss half of the situation, the other
half is deleting node y, whose token generation and
update procedure is very similar to the previous
situation.



Query:	QueryToken
When	q	=	x,	query	on	a	node	x.

Case	1:	If	node	x	is	a	singleton

1. Get	the	PRF	key	and	the	counter	in	dict.
2. Generate	the	QueryToken and	UpdateToken for	each	

counter.
3. Encapsulate	these	two	kinds	of	token	into	one	token	

named	QueryToken.

Case	2:	x	is	not	a	singleton.

QueryToken =	x.

Case	3:	x	doesn’t	exists	in	previous	graph.	QueryToken =	
empty.



Query:	Do	Query

Why do we need the plaintext graph?
Once the query on x is done, we think that (x, *) is
not secure anymore. For efficiency, we throw these
edges to a plaintext graph.

1. Try to get the result directly from plaintext
graph

2. Get the result form EDB, delete these edges
from EDB

3. Merge the result from step 1 and 2
4. Adding the query result to the plaintext graph



Security	Proof
◦ Take	the	proof	of	previously	constructed													for	illustration:		

Simulator					:	which	simulates	the	queries	and	updates	of					,	which	is	a		

secured	scheme.

Simulator				:	which	receive	the	leakage	for	random	x	when	update.

for	instance:

Then	pass																										to						,	which	outputs	a		simulated	token						.

If	there	exists	an	environment	which	distinguish	the	simulation	and	the	

real	scheme,	then	S	can	be	constructed	by	this	environment.



Cascaded	Triangles
Motivations: The updates should affect the previous DB as less as possible.

Previously we used linked list, trees and others.

Idea: we separate the big binary tree into many small perfect binary trees,
whose size is kept in cascaded order. We call these perfect binary trees
“Cascaded Triangles”.

So the update will just affect a few triangles!



Cascaded	Triangles

Why	do	we	need	three	dictionaries	instead	of	one?	Think	when	traverse.

Firstly,	we	need	to	store	the	root	address	of	every	triangles,	that	is	the	
first	dictionary.

Secondly, given the root, we should know what are the left and right child
(if any) of the root. So the second dictionary to store the detailed
information of every node is needed.

Lastly, clients are not always traverse by X, so another dictionary to store
the dual root address is needed.



Cascaded	Triangles
Consists	of	three	dictionaries							,						,	and		

stores	the	root	address	and	heights	of	the	triangles	at	the	client.

stores	the	address	of	the	dual	tuples,	for	dual	retrieving.

maps	the	address	to	a	tuple	(a,	b).

and									are	stored	at	the	servers’	side.

Requirement	of	Heights:																																														



Adding	a	Node
First	add	it	as	a	root	node	of	a	new	tree.

If	two	shortest	trees	have	the	same	height,	combine	them.



Deleting	a	Node
Firstly,	replace	that	node	with	the	root	of	the	shortest	tree.

If	it	is	a	singleton,	simply	remove	the		corresponding	linked	list	node.

Otherwise,	update	the	linked	list	so	it	points	to	one	of	its	child.



Deleting	a	Node
If	we	want	to	delete	node	x:
Firstly,	we	traverse	the	set	(x,	*,	*)	using	the	traverse	algorithm.	
Delete	all	the	traverse	nodes,	based	on	the	address	of	the	root	node.

Then,	use	traverse	result	of	x	to	find	the	duals	in	triangles	based	on	y.
Replace	these	nodes	(in	the	middle	of	some	triangles)	with	the	smallest	
triangles.



Encrypted	Version
Main	idea:	

Split	G	into	two	graphs,	one	is	the	ciphertext graph	and	plaintext	graph.

1.	Now	we	only	stored	the	ciphertext in	tuples	of												.	

2.	Using	two	secret	keys	to	access	a	=	(x,	y,	w)	and	b	=	(ch0,	ch1)	.	The	
keys	are	independently	generated	for	each	x.

3.	The											additionally	stores	the	two	secret	keys	associated	to	x.



Encrypted	Version:	Queries
Differences	form	non-encrypted	version:

1.	When	retrieving	of	the	root	address,	the	two	secret	keys	are	also	
retrieved.

2.	The	clients	sends	the	result	of	the	retrieval	back	to	the	server.	The	
server	used	the	first	key	to	get	part	of	the	query	result.	And	use	the	
second	key	to	get	the	subtrees.

3.	The	server	also	returns	the	previous	result	in	plaintext	graph.	


