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ABSTRACT 
Dynamic Searchable Symmetric Encryption aims at making possible queries and updates over 
an encrypted database on an untrusted server, with minimum leakage about user’s data to the 
server. DSSE is called ‘dynamic’ because it supports ‘light-weighted’ additions and deletions 
at the client’s side rather than complex reencryption of the entire database for updates. 

 

Recently as the discussion of cloud computing and other online service based on database 
increases, the security issue of DSSE is widely concerned. As a newly released research 
addresses, DSSE can leak considerable information under some devastating adaptive attacks 
that aim at inserting elements which match the previous query. To solve this problem, the 
concept of forward privacy was proposed. 
 
In this article, we basically consider two schemes of DSSE, both of which achieved forward 
privacy according to their definition. The first one is Σoφoς – Forward Secure Searchable 
Encryption by Bost. He defines forward privacy in top of different leakage patterns and create 
the Σoφoς construction which not only consider to be forward secure, but also supports both 
addition and deletion. The second one is Generalizing Forward-Secure Encrypted Search 
Generic Construction and New Data Structure by Russell. He further differentiated forward 
privacy into several conditions, including fully forward privacy and half forward privacy. 
Moreover, a new data structure named ‘Cascaded Triangles’ was proposed, with improved 
updates efficiency and full forward privacy. 
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1. Introduction 

1.1 Motivating Problem and Multi-Party Tradeoff 

 

In the age of cloud computing and cloud storage, online database stored at the server’s 
side is a common choice for cloud service infrastructures and their users. When using the 



online database, the user always want a solution which he can do queries and update 
dynamically, with as less leakage of his personal information as possible to the service. 
 
In real world, absolute security with zero is very hard to achieve. In order to improve 
security, many people tried to build solutions with powerful techniques like multiple-party 
computation, fully homomorphic encryption, or Oblivious RAM. However, none of these 
solutions achieves both efficiency and security: they are either computationally expensive 
or impractical to apply on real case. Most of them are very slow and user often needs to 
download the entire database and do search locally [Nav15]. 
 
As a result, the user want a relatively ‘light-weighted’ solution: a construction which offers 
update and query protocols, so that he can apply such protocols without downloading and 
reencrypting the entire database again. The update should require affordable changes to 
the former database, which are handled at the server’s side. Besides, the solution should 
only allow a small amount of controlled leakage to the server. 
 
These motivating problems actually run with the tradeoff within efficiency, functionality 
and security. The way of design a DSSE is actually the way of finding a balanced point 
with the most wanted solution in the tradeoff. 

 

1.2 Discussion of Functionality 

 
As a secure version of the online database, the main function of DSSE is similar to common 
databases. It should support protocol of query and update so that the user can well 
maintain the database.  
 
In order to facilitate discussion, both Bost and Russell use the idea of binary pairs to 
explain their constructions. In Bost’s setting, a tuple of index/keywords set pairs (indi , 
Wi) is introduced, with index indi being the index of actual stored documents and keywords 
Wi being the key to find these documents. In Russell’s build, a bipartite graph G with 
partitions X and Y is introduced. In actual use, X might be the set of keywords and Y 
might be the set of documents. 
 
As for the query, both of their design runs under a given keyword. In Bost’s setting, the 
query could be DB(w) = {(indi |w∈W}, which means finding the indices of the documents 
which contain specific keyword w. In Russell’s setting, because the X and Y bipartite graph 
is more general, as a result the query can start either from x or y. 
 
Although an agreement is reached in the query part, their design varies on update protocol. 
Both of them uses edge addition to support adding new mapping manually to the database 
(which is the common case when setup the database). Bost’s deletion is simply edge 
deletion while Russell uses node deletion to delete all edges connecting to a node (e.g. 
deleting all documents which contain a specific keyword). 



 
The question of which deletion is better is however under some debate. Edge deletion is 
considered to be a micro, fine grained modification of existing data. It allows the user to 
slightly change the inner connection between indices and keywords. However, such fine 
grained solution often comes with tradeoff. The user has to keep all of the mapping status 
locally so that he can know which edges need to delete when dealing with massive edge 
removal. In real world cases, the major application of SSE is for text file storage whose 
deletion comes with nodes rather than edges. Node deletion is considered to be more 
practical and convenient. 

 

1.3 Why Forward Privacy 

 

After the idea of DSSE been proposed, many security tests have been run on DSSE based 
on designed attacks. Recent work by Zhang [ZKP16] reveals a security vulnerability of 
many DSSE system. The attacker can run a devastating adaptive attack by injecting as 
few as ten new documents to the system. The attack can be done on almost every DSSE 
because in the previous setting without requirement of forward privacy, the server can 
learn whether the newly added documents matches a previous search query. 
 
The problem arises as no forward privacy has been formally considered in almost all 
previous builds. In fact, the first idea of forward privacy was proposed by Stefanov [SPS14], 
required such information not to be leaked to the server. However, his proposal is a 
primitive one without formal explicit definition or notation. And his explanation based on 
leakage function of query but not update could be problematic. While forward privacy 
appears to be a very desirable property, not many solutions are known in the literature. 
 
Bost then modified the previous definition by applying leakage function of updates rather 
than query to define forward privacy. However, the definition from Bost for forward 
privacy is still limited to a certain type of condition. Russell defines the forward privacy 
in a more specific way, in total 12 possible kinds of definitions are considered based on six 
different conditions of updates. 

 

1.4 Data Structure Problem 

 

The design of DSSE data structure is an essential part to realize those discussed 
functionalities. With query, edge addition, and node deletion (which is based on edge 
deletion) in mind, design a data structure which achieves both parallelizable operations 
and traversal efficiency is never an easy work. 



 
Early structure of DSSE doesn’t consider much about parallelization, which would lead to 
low performance in modern paralleled computation environment. The first DSSE proposed 
by Kamara [KPR12] uses linked list for storage and only supports unparalleled traversal 
and update. In most practical cases, user often wants a parallelizable solution which 
supports parallel traversal. The first parallel DSSE scheme utilizes binary search tree as 
its data structure. However, maintaining this structure for traversal efficiency may involves 
many complex rebalancing operations and rotations. And letting server to do such 
operations would lead to many leakage problems. 
 
Consider the binary tree solution, it is thought to be inefficient and insecure because it 
requires to change too much existing data in the update protocol. If we can minimize the 
changes to a small number or a constant, there would be much less leakage and the 
efficiency of update protocol could be well improved. By that thinking, a new data 
structure ‘Cascaded Triangles’ was proposed. This structure supports parallel queries and 
updates, and adding or deleting data only affects a constant amount of existing data. 
Thanks to cascaded triangles, the new construction features minimal leakage, optimal 
query and update computation complexity up to a constant factor. 

 

2. General DSSE 

2.1 Notations 

 

Let λ be the security parameter, poly(λ) and negl(λ) denotes any polynomial and negligible 
functions respectively. Let ∗ denotes the wildcard character. {0,1}n denotes the set of n-
bit strings while {0,1}* denotes the set of arbitrary long bit strings and {0,1}λ denotes the 
set of λ-bit strings. Φ denotes the empty set. If x is a set, x ← X	(the same as	x	$ ← X in 
Bost’s notation) samples an element x uniformly form X. If A is an algorithm, x ← A 
means that x is the output of A, ⊕ denotes the bit-wise XOR operation. 

 

2.2 Data Representation 

 

A. In Bost’s design, the database is built based on a tuple of index/keyword pairs. 

Common representation of the database could be: 

DB = indi	,Wi -./0 , with indi ∈ {0，1}6 and Wi ∈ {0，1}∗. 

The keywords of the database DB are denoted as set W, which is a combination of all 
Wi.  



W = Wi
0

-./
 

The number of all documents in the DB is denoted as D, the total number of keywords 
is denoted as W, and the total number of document/keyword pairs is denoted as N 
(Noted that we use italic here for the number). 

D, W = |W|, N = |Wi|0
-./  

DB(w) is denoted as the documents set which contains a specific keyword w, which is 
often used in query representation. In that way, the number of all binary pairs N can 
also be represented as: 

𝑁 = 	 |𝐷𝐵 𝑤 |
>∈?

 

Although Bost himself didn’t explicitly defines the representation of the protocols for 
query, edge addition and edge deletion, but let q denote the query operation and u 
denote the update operation: 
 
1) Query: q = DB(w), which means finding all the documents contains keywords w. 
2) Edge Addition: u = (add, indi , Wi), which means adding an edge connecting 

document index indi and keyword Wi. 
3) Edge Deletion: u = (del, indi , Wi), which means deleting an edge connecting 

document index indi and keyword Wi. 
 
B. In Russell’s design, the database is represented in a more general style. Instead of 

specifying the document index and keyword, bipartite graph contains X and Y was 
used as a generic representation.  

  
Let X, Y and W be sets where X and Y disjoint, i.e. X∩Y = ∅. Let G be a labeled 
bipartite graph with edges labeled w.  

i. e. w ∈ W 
Different from Bost’s tuple which only contains two elements, tuple treats edge here 
as its third member. In that way, a tuple can be denoted as: 

x, y, w ∈ X×Y×W 
By the help of wildcard character ∗, a node y can be denoted as the combination of 
all the edges connects to node y, such as: 

(∗, y,∗) or similarly x,∗,∗  for a node x 
Let q denote the query operation and u denote the update operation: 
 
1) Query: q = (∗, y, ∗) or q = (x, ∗, ∗), the query can be start from every node at 

both side. 
2) Edge Addition: u = (add, x, y, w), which means adding a new edge w, connecting 

node x and y. 
3) Node Deletion: u = (del, x, ∗, ∗) or u = (del, ∗, y, ∗), which is based on edge 

deletion and deletes all the edges connecting to node x or y. 
 

2.3 DSSE Protocols 



 
Both of the two design have three DSSE protocols: Setup, Search/Query, and Update. 
 

A.  
1) Setup(DB) which outputs a pair (EDB, K, σ), which takes unencrypted database DB 

as input and outputs secret key K, encrypted database EDB, and client’s state σ. The 
setup step is done at the client’s side, and then the EDB and σ is outsourced to the 
server. 
 

2) Search (K, q, σ; EDB) = (SearchC(K, q, σ), SeachS(EDB)). The client inputs the secret 
key K, the state σ, and the query q to the server which stores EDB. For single-keyword 
search scheme, the query q can be substituted as a unique keyword w. 

 
3) Update(K, σ, op, in; EDB) = (UpdateC(K, σ, op, in), UpdateS(EDB)). The client input 

its secret key K and state σ, an operation op and an input in parsed as the index ind 
and a set W of keywords to the server which stores EDB. The server then updates its 
EDB to the newest state. 

 
B.  

1) (K, EDB) ← Setup (1λ, |X|, |Y|, |W|). The user inputs the security parameter λ, the 
size |X|, |Y| and |Z| of the spaces. It outputs a key K, and an (initially empty) encrypted 
database EDB, which is outsourced to the user. 

 
2) (K’, R), (EDB’, R) ← Qrye((K,q), EDB). The user inputs the secret key K and a query 

q. The server has the encrypted database EDB. The user outputs a possibly updated 
key K’, while the server outputs possibly updated encrypted database EDB’. R is the 
result, outputted by both the user and the server.  

 
In non-interactive scheme, aextra token generation and passing step is required.  
(K’, τq) ← QryTkn(K,q) to generate a token τq. 
(EDB’, R) ← Qrye(τq, EDB) to pass the token from the user to the server so that the 
server can run the query. 

 
3) (K’, EDB’) ← Udte((K,u), EDB) The user inputs the secret key K and an update u. 

The server has the encrypted database EDB. The user outputs a possibly key K’ while 
the server outputs a possibly EDB’. 
 
In non-interactive scheme, extra token generation and pass step is required. 
(K’, τu) ← UdtTkn(K, u) to generate a update token τu. 
EDB’ ← Udte(τu, EDB) to pass the token and runs the update. 
 

2.4 Discussion 

   



Though both A and B provide a general solution of DSSE, B differs from (or better 

than in some situation) A in the following perspectives. 

 
Firstly, B adapts node deletion rather than edge deletion in A. In most practical cases, 
node deletion is considered be more useful. Not only the user doesn’t need to keep the 
mapping of node and edges locally when deleting, but also less leakage would be concerned 
because deleting a node rather than several edges would leak less information about the 
mapping status. 
 
Secondly, B supports bi-directional searches while A’s search is mostly single-directional. 
Although in most case query over one of the partitions are already sufficient to naturally 
capture a wide range of applications as well as these queries uses semi-private data [CK10], 
compatibility of bi-directional searches would still bring benefits when the data need to be 
searched from each side (e.g. ID card number and name). 
 
Moreover, B considers the iteration of secret keys while A doesn’t. In the following part 
with forward privacy involved, it is needed to change secret Key for many times to achieve 
the requirement of security. In that case, B is more favored because a forward private 
model can directly build on the general DSSE case without much modifications. 

 

3. Forward Privacy 

3.1 Preliminaries of Common Leakage 

 

A. Let L denotes as the leakage function which measures the content of leakage.  

 
In Bost’s setting, when leakage is limited to search queries, we denote leakage function 
as Lq(q), which is defined as (q, SearchPattern). When leakage is spread to updates, 
which means repetition of updated keywords also leaked, we denote leakage function 
as Lu(u) which is defined as (u, QueryPattern). 
 
More formally, Bost introduces the concept of query list Q, which denotes the historical 
queires. Q keeps entries represented as (i,w), which means searching keyword w in the 
i-th query. Or (i,op,in),which means an update with operation op and input in in the 
i-th update. (i is a timestamp which is initialized to 0). 
 
Based on idea of query list, he further defines the SearchPattern and QueryPattern as 
followed: 
 



SearchPattern: sp(x) 	= 	 {j:	(j, x) 	 ∈ 	Q}, which only match the search queries. 
QueryPattern: qp(x) 	= 	 {j:	(j, x) 	 ∈ 	Q	or	(j, op, in) 	 ∈ 	Q	and	x	appears	at	in} , which 
means it matches either search queries or search updates. 
 
Bost also introduces the notation HistDB(w), which means the documents historically 
added to DB which matches the keyword w. Similarly, UpHist(w) means the 
documents historically updated in DB which matches the keyword w. 

 
B. In Russell’s design, the idea of dummy queries is provided, so that some of the leakage 

function can be defined as: 

 
Where xi denotes the dummy queries leaked during the addition of edges connecting 
x after the previous query on x. 
 

3.2 Definitions 

 

The general idea of forward privacy was described as an update does not leak any 
information about the former updated keywords. Based this idea, different definition of 
forward privacy is defined. 
 
A. A L-adaptive-secure SSE scheme Σ is forward private if the update leakage function 

Lupdt can be written as: 

 

where {(indi,ui)} is the set of modified documents paired with the number ui of 
modified keywords for the updated document indi. 
 
Bost’s definition can be seen as a slight modified version of the previous arbitrary 
definition by Stefanov [SPS14]. Bost realized that some previous problem when 
defining forward privacy based on the added documents rather than updated 
documents. In fact, the previous forward privacy was captured by leakage function by 
query rather than leakage function by updates, which utters the initial expectation of 
forward privacy. 
 

B. In Russell’s definition, forward privacy was more precisely defined with multiple 
conditions of update. At first, according to different connection condition of two edges 
to be added in the bipartite labelled graph, forward privacy was separated into two 
cases: half-forward privacy and fully-forward privacy. 
 



Let DSSE be a (Lq, Lu)-CQA2 secure DSSE scheme for labeled bipartite graphs defined 
by the spaces X, Y, and W. We say that DSSE is: 
 
1) Half-forward Private: if for any ub =(Add, xb, yb,w) where b =0, 1, and x0 = x1 or 

y0 = y1, then for any PPT distinguisher D, it holds that: 

  
The inequation above means that the possibility of successfully distinguishing the 
two updates u0 and u1 is less than the negligible function. 
 

2) Fully-forward Private: if for any ub =(Add, xb, yb,w) where b =0, 1, then for any 
PPT distinguisher D, it holds that: 

 
The inequation above means that the possibility of successfully distinguishing the 
two updates u0 and u1 is less than the negligible function. 

 
The main idea of this differentiation is whether hide one end of edge or hide both ends. 
Half forward privacy only hides one end of the connection (x, y) while fully-forward 
privacy hides both ends of the connection, which makes attacks aiming at specific 
leakage harder to succeed. 
 
Recall that half-forward privacy needs to satisfy the condition of x0 = x1 or y0 = y1, so 
if we implement two updates of adding edges, there would be a high possibility that 
the two new edges are connecting to the shared node. Such vulnerability can be caught 
by attacks which analyze the update rate of different nodes. In that way, maintaining 
half-forward privacy may be not an ideal secure measurement. 
 
However, half-forward privacy and fully-forward privacy may not be the whole picture. 
Later an exhaustive version of forward privacy was proposed, this time with six 
different cases of update Ui with or without restriction pi (if without, pi is simply set to 
be 1): 
 

 
 
Now, not only do we consider the shared node condition for two edge additions, but 
also for deletions, too (here means deleting the same node as condition 5 or 6 states).  
 



The previous forward privacy in A could be represented by (U1∪U4, 1)-forward privacy. 
And the half-forward privacy and fully-forward privacy in B could be the case U1, with 
and without restrictions. 
 

3.3 The Need and Constraints 

 

The study of real world consequence of SSE scheme leakage addresses the urgency of 
defining forward privacy too. Islam [IKK12] and Cash [CGPR15] shows that specific file 
injection to the server could cause considerable leakage, for both static and dynamic SSE 
schemes. Zhang then improves the file injection attack [ZKP16] and introduces the non-
adaptive and adaptive attack. 
 
In the adaptive attack, which is consider to be very efficient for non-forward-private 
scheme, the attacker could reveal a previously searched keyword w by submitting log2T 
new documents if he has partial knowledge of the database, or W/T + logT new documents 
if he doesn’t. In a practical test run by Zhang, if T = 200, leakage for query pattern could 
be revealed just after submitting less than 10 new documents. 
 
However, though forward privacy is believed to be a significant improvement in security, 
it also brings downside in terms of efficiency. 
 
Constraints on Storage  
Because the previous design of deletion by Bost is actually a ‘lazy deletion’. In order to 
avoid possible leakage when reclaiming space, the deleted entry is often marked as ‘empty’ 
rather than actually being deleted from storage. If some cases in actual need frequently 
deletion, ‘lazy deletion’ may not be a good idea because it won’t release the storage 
resources taken by the deleted edges. 
 
Constraints on Locality 
In dynamic scheme, there always exists tradeoff between the locality and forward privacy. 
Firstly, with previous build like ORAM which needs frequent access to the disk and slow 
down the process, the discussion of memory locality may not be worth the effort because 
it bottleneck is at the disk. Secondly, the initial of forward privacy which requires new 
updates unrelated to existing contents makes locality come with high price. Somehow to 
achieve both forward privacy and efficiency large modification of the EDB needs to be 
done in searches and updates, and it is commonly considered to be not worth it. Finally, 
with the help of modern SSD, Bost claims that the evaluation of his implementation can 
also be done without locality. 
 

3.4 Discussion 

 



Both A and B realize that it could be problematic in previous definition when defining 
forward privacy based on the added documents rather than updated documents. And both 
of them defines forward privacy based on leakage function on update rather than leakage 
function on query, which suits the initial idea of forward privacy based on updates. 
 
However, in detailed definition, B gives a more comprehensive specification than A. With 
six different updates and their restriction in mind, we can define up to 12 kinds of forward 
privacy, and the forward privacy of A is one of them. Although not every case will be 
practically used and in fact only the half-forward privacy and fully-forward privacy are 
implemented latter in B, giving a whole picture of the definition is somehow meaning. 
 
Another major difference of A and B it the way they treat deletion. In order to be not 
distinguishable by some adversaries when reclaiming the storage marked deleted, A uses 
the idea of ‘lazy deletion’ which only marks the deleted entry as empty and simply gives 
up the idea of reclamation, trading storage (or efficiency) for security. This measurement 
needs more storage and may suffers significant efficiency loss in some real cases requires 
frequently deletions. On the contrary, B thinks that the forward privacy only for addition 
is sufficient in real cases and chooses to achieve higher efficiency in deletion, which reclaims 
the storage after deletion.  
 
In my understanding, maybe there exists some other solutions. We might use some 
techniques to make storage reclamation ‘not easily distinguishable’, which could reduce 
the loss of efficiency and achieve forward privacy in deletion. For instance, delay the 
storage reclamation after a pseudo random time after marked ‘empty’ may fool the 
adversary? 

 

4. Forward Private DSSE 

4.1 Preliminaries 

 

A. The key idea of Bost’s design is based on trapdoor permutation.  
 
A trapdoor permutations is a function that is easy to computer in one direction, yet 
difficuilt to compute in the opposite direction without special information. For instance, 
RSA is trapdoor permutation which is easy to compute with private key but hard to 
compute without the knowledge of private key, and the ‘trapdoor’ here is the special 
information private key. 
 



 

 
Here, UTc(w) denotes the location to store the indices for a specific keyword w. In that 
location, a indexed list of documents matching keywords w was stored like (ind0, ……, 
indn). And UTc+1(w) denotes adding a new index for a new document matching 
keywords w. 
 
When the client wants to perform a search on query w, he will issue a search token 
that allows the server to recompute the update token and location of the entries 
matching w. In general, we want the update token for a given w to be unlinkable until 
a search token STc(w) is issued. In the figure shown above, we want the search token 
STc(w) to be unrelated with the update token UTi(w) when i > c. 
 
By the help of trapdoor permutation, the server will be able to compute STi-1(w) from 
STi(w) using a public key. And the client is the only one to be able to construct STi+1(w) 
using the secret key from himself. 
 

B. In Russell’s design, the forward private DSSE scheme is denoted as ε. Each keyword 
keeps a table of PRF keys Kx and a counter cx. A dictionary γQ maps the query on 
keywords q = x to a PRF key Kx and the counter cx.  
 
To improve efficiency, when a query result is open and the plaintext result is returned, 
we would not consider the plaintext to be worth protected anymore and simply throw 
it to somewhere specially keeps the queried plaintext. In that way, a plaintext graph 
G and a ciphertext graph G is introduced.  
 
The main idea of the design is to achieve forward privacy by locally keep the dictionary 
γQ. 
 

4.2 Constructions of Forward Private DSSE 

 

A. The Σoφoς Construction 

 
In the setup step, SK and PK are generated by KeyGen algorithm and W and T was 



created as two empty map. Then it outsources the (T, PK) to the server and (KS,SK) 
with W to the client. 
 

 
 
In the search (query) protocol based on query q = w at the client’s side, the client first 
use the PRF function F to generate a one-time key Kw, then the client checks whether 
the index w of his table W contains the search token	STc and the counter c. And set c 
= nw – 1. If q = w has never been searched in history, which means (STc, c) 	= 	┴ , the 
client returns ∅. In the end, the client sends one-time key Kw, search token STc (if any) 
and counter c (if any) to the server. 
 

 
 
At the server side, the server uses the one time key Kw, and the previous search token 
STi as an input to a hash function H1 to generate the Update token UTi respectively. 
In this step, each search token STi with i <= c is obtained by the public key PK. Use 
the update token UTi, we can check whether it has been updated in table T, returns 
the encrypted index e. By XOR operation with result of hash function H2, the 
unencrypted version ind is found and returned to the user. 
 

 
 
As for update, we only consider addition in this part. When the client needs to add a 
new edge connecting w and ind, he needs to first generate the one time key by PRF 
function F. Then he checks the table W for previous searched token STc and counter 
c, if none, he generates the new search token ST0 and set c to be -1. If any, he uses his 
secret key SK to generate the new search token STc+1 and updates (STc+1, c+1) at 
W[w]. Then he uses two hash function to get the update token UTc+1 for c+1 and the 
encrypted index e by second hash with XOR operation, then outsources them to the 



server. 
 

 
 

The server’ s task in addition is very simple, it just uses encrypted index e to update 
T[UTc+1]. 

 

 
 

B. Forward Privacy for Any DSSE 

 
In the setup step of Russell’s forward private DSSE, the user inputs a security 

parameter λ， which generate the key 𝐾 and the initial EDB. The dictionary γQ and 

plaintext graph G is set to empty. The the key 𝐾 and the dictionary γQ is given to 
the client and the initial EDB and the empty plaintext graph G is outsourced to the 
server. 
 

 
 

In the addition protocol at the client’s side, u = (Add, x, y, w) is sent by the client, 
means adding a new edge (x, y). Based on the different condition on node x or y, there 
are two cases to be concerned. The first case is node x is a singleton, which means 
there are no edges connecting to node x before, thus, we simply generate the key by 
the PRF function and set counter as 1 and updates γQ[x]. The other case is that node 
x is not a singleton, thus we simply add 1 to the counter and then updateγQ[x]. In the 
last, an update token is generated to be outsourced to the server. 
 



 
 
At the server’s side, the server simply updates the EDB by the received update token. 
 

 

 
The deletion protocol at the client side is similar to the addition one. The main 
difference is now we delete node rather than edges, which means we have more edges 
to deal with. The update token for node deletion here is actually the combination of 
all the update tokens for the edges connecting to the node. We first retrieve the table 
to get tokens of edge deletions and then ‘encapsulate’ the edge deletion tokens into one 
node deletion tokens. Noted that though edge deletion is actually involved in the whole 
process, but the client only need to tell the server which node to delete and the server 
first retrieves all the edges and then delete them, so the efficiency and leakage problem 
we concerned before can be gone. 
 

 

 
The server’s side operation is based on the deletion token received and then the server 



deletes all the edges in encrypted version respectively. 
 

 
 

The search part at the client’s side is basically two steps: retrieve the table for query 
x (if any) and generate the delete token for node x. 
 

 
The search part at the server’s side not only delete the edges connecting to node x, 
but also return the plaintext result and throw it the plaintext graph G for better 
efficiency. 
 

 

 



4.3 Discussion 

 

Except the different ways of handling deletion as we discussed before, the two 

DSSE schemes is proved to be forward private by different approaches. 

 

A uses the concept of trapdoor permutation and two table to store the historical 

search tokens and update tokens at client’s and server’s side, respectively. The 

server is provided with PK but no SK to ensure it cannot deduct the token in 

forward cases.  

 

B’s key idea is to maintain the table which contains the historical queries locally. 

And the server’s manner is strictly controlled by the pass of tokens. 

 

Both A and B tries to use some approaches for better efficiency. A uses some 

techniques in asymmetric encryption like Chinese Reminder Theory to reduce the 

additional computational expenses and release some stress on local storage caused 

by ‘lazy deletion’. B uses a plaintext graph for the queried result and deletes the 

encrypted result from EDB after query, which also improves the efficiency. 

 

5. New Data Structure 

5.1 Overview and Notations 

 



The simplified idea of cascaded triangles is to divide the previous one large binary 

tree into many cascaded small binary trees, named triangles.  

 

The height of the cascaded triangles increases from the first to the last, with only 

the first two triangles could be of equivalent height. 

 

 

 

The advantage of division is that in each time of update, only small part of the 

whole data structure will be affected (mostly one or two triangles). 

In the construction of cascaded triangles, three dictionaries are introduced as γQ, γD, and 
γσ. 
γQ [x] = (addr1, ……, addrk, h), which stores the root addresses of each triangle and their 
height. 
γD [addr] = addr, which is used to store the addresses of duals. 
γσ [addr] = (a, b), with a = (x, y, w) being the edge stored in this node and b = (ch1, ch2) 
being the address of their child. 
 
The first dictionary is stored at the client side, and the latter two dictionaries is stored at 
the server’s side.  
 

5.2 Plaintext Version of Cascaded Triangles 

 
In the plaintext version of cascaded triangles. Query on x needs the client to traverse γQ 
[x] = (addr1, ……, addrk, h) locally. Once the root node of each triangle is obtained, the 
traversal can be continued with the help of the children node addresses stored in γσ [addr] 
= (a, b) at the server. 
 
When dealing with update, keep in mind that the requirement on heights of the triangles 
should be maintained. In that way, division add combination of triangles would appear in 
deletion and addition. 
 
In the addition part, we simply add the new node as a root of a new triangle, this triangle 



has only one node, which is the root node. If there are another triangle of the same height, 
combine them into one new triangle. 
 

 
 

 
 

In the deletion part, if we want to delete node x, Firstly, we traverse the set (x, *, *) using 
the traverse algorithm. Delete all the traverse nodes, based on the address of the root node. 
Then, use traverse result of x to find the duals in triangles based on y. Replace these nodes 
(in the middle of some triangles) with the smallest triangles. 
 

 

 
 

5.3 Ciphertext Version of Cascaded Triangles 

 
The main idea of the ciphertext version is to split G into two graphs, one is the plaintext 
graph and one is the ciphertext graph, they are stored at the client’s side and server side 
respectively.  
 
Now we only need to store the ciphertext in tuples of γσ [addr]. Two secret keys are used 
to access a = (x, y, w) and b = (ch1, ch2) respectively. Plus, the γQ [x] now additionally 



stores the two secret keys associated to x. 
 
The encrypted version is similar to the plaintext version, though with more detailed steps 
handling the plaintext graph and the ciphertext graph. 
 
Traversal and Query 
When retrieving the root address locally, the two secret keys are also retrieved. The client 
sends the result of the retrieval back to the server. The server uses the first key to get part 
of the query result. And then uses the second key to traverse the sub triangles. The server 
also returns the previous result in plaintext graph. 
 
Addition 
Now the clients send encrypted version of (a, b) denoted as (ca, cb), which is encrypted 
under two secret keys correspondingly retrieved by γQ [x]. When the γQ [x] is empty, the 
user need to generate two new secret keys for x. 
 
Deletion 
The step for deletion shares many identical features with traversal. But here the client will 
not send ak. Instead, the server returns all ca so the client can decrypt them locally. After 
acknowledging which edges to delete, the client and the server delete all edges connecting 
to node x, the ciphertext or the plaintext. As a result, the node x can be removed from 
both the ciphertext graph kept at the server’s side and the plaintext graph kept at the 
client’s side. 


