
Improving Mobile Phone Image Quality by Deep Learning

Cen Huang
The Chinese University of Hong Kong

hc015@ie.cuhk.edu.hk

Yicun Liu
The Chinese University of Hong Kong

ly116@ie.cuhk.edu.hk

Abstract

Despite the rapid progress in the processing power of

smart phones, the improvement of mobile device’s image

quality has long been slow. Due to the strait physical lim-

itations in sensor size and aperture optical structure, it re-

mains challenging for mobile devices to compete against

those DSLR cameras. In this thesis, we bridge the gap

by introducing our deep neural enhancement framework

which generally learns the enhance transformation from

mobile-phone-quality images to DSLR-quality images. To

solve the imperfect alignment problem of our training data,

we proposed two methods: the first method goes through

a two-phase enhancement, on the one hand, it gradually

refines the detailed texture by implementing DPED end-

to-end frameworks, one the other hand, it adopts style-

transfer techniques and implement the locality semantic en-

hancement by feed-forward structures. The second method

first solves a intrinsic decomposition and then enhances

the shading, reflectance, and lighting components respec-

tively. This framework is trained with three datasets with

different concentration in in color, texture and noise, and

focuses only on its meaningful components in the intrin-

sic decomposition. To that end, we establish a framework

which first learns intrinsic image decomposition on self-

supervised manner, then apply a multi-domain image trans-

lation architecture to learn a comprehensive enhance trans-

formation from those partially enhanced datasets.
1

1. Introduction
Improving quality of images produced by mobile de-

vices, which can be regarded as many sub-problems such
as image super-resolution, image denoising, image deblur-
ring, contrast enhancement, chromatic balancing, has been
an emerging researching and industrial area in recent years.
Due to the size limitation of mobile optics, together with the
hand shaking from the photographer, images shot by mobile
users are mostly undesirable in structural details and textu-

1The two authors are of equal contribution.

Figure 1. Quality comparison of DSLR Image(left) and Mobile
Phone Image(right): It can be observed that DSLR image has
more texture and structure details than the image shot by iPhone.
Also, for high-contrasting scene, our sampling DSLR equipped
with HDR has better dynamic range, showing especially better
quality and more detail in the shadow area of the image.

ral information. Moreover, images taken in the low-light
environments by mobile devices are usually lack of details
and within low-dynamic range, leading to the unsatisfying
performance in the overall visual assessment.

So far, there exist a number of precedent methods spe-
cialized for one of those sub-problems, but still, no uni-
versal solution conjugating all those sub-domain solutions
has been discussed. Contrast focused approaches as his-
togram equalization can only adjust the global contrast and
maximize the information entropy, which brings about lim-
ited improvement in detail reconstruction and hue balanc-
ing. Chroma focused methods aim to sample and adjust the
hue distribution of the images, targeting at remapping the
color space of the original pictures into a more attractive
one. Those methods are usually specially designed for spe-
cific scenarios of images, with considerable computational
cost and usability constraints.

Until very recently, Convolutional Neural Networks
started to demonstrate its superiority in image enhancement
task. Different from previous methods with a specific fo-
cus, CNN based methods mostly benefit from using a large
volume of images in the training process, to learn the cor-
responding high-quality features. Up to now, the most im-
pressive sub-task benefited from CNN is super-resolution
proposed by Dong at [7]. Although quantitative measure-
ments like PSNR and SSIM indicate the significant im-
provement in recent works, most tests are still based on gen-
eral downgrading algorithms such as bicubic downsampling
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Figure 2. Difficulties in image registration due to different sensors
and optics: The left image is the result of registration, in which
the red and blue area indicate the imperfect alignment. It can be
observed that even with camera registration, misalignment still ex-
ists, this problem is also reflected in another similar dataset[2].

and Gaussian blurring to synthesize low-quality samples in
the training step. Those techniques are not suitable for real-
world image enhancement tasks: visual quality defined in
real-world images is far more than maintaining sharpness in
edges, and most importantly, it is infeasible to decompose
the low-quality factors and treat them respectively from a
low-quality image.

When it comes to the real-world image enhancement
task, the most intuitive approach is sampling high quality
and low-quality images separately from DSLRs and mo-
bile phones, then inputting them into an end-to-end training
procedure to learn the contributing features of high visual
quality. The motivation for making this initial attempt is
straightforward: given two images of the same scene, with
high quality and low quality respectively, learning the en-
hancement transformation which explicitly improves those
sub-domain qualities is plausible. However, there are two
fundamental challenges in practice: paired image misalign-
ment and unpaired training ambiguity.

Misalignment in Sampled Images - In real-world cases,
images taken by mobile phones often suffer from differ-
ent extents of distortion and dispersion, preventing accurate
alignment without appropriate undistortion in the prior pro-
cessing step. Even undistortion itself is challenging: The
distortion parameter matrix of a certain camera is not sin-
gular, considering the movement of relative position in the
lens when focusing at different ranges, no unique solutions
can be constructed from such a rank-deficient matrix. Even
if the corrected images appear natural in global views, even-
tual registration by existing MATLAB algorithms fails to
provide a reasonable pixel-wise mapping. Consequently,
the pixel-wise loss function, which is indispensable to low-
level vision tasks, can no longer contribute to our training
process.

Lack of Semantic Supervision in Pairwise Training -
When applying the end-to-end pairwise training strategies
with simple l1 or l2 regularization, an essential problem is
worth consideration: How to divide high-quality and low-
quality image pairs into semantic-meaningful patches for

network training? In most cases, for the sake of simplicity,
image patches are randomly sampled and used for training,
preventing accurate semantic information from being trans-
ferred into the neural networks, which causes the loss of de-
tails in generated results. Even strange artifacts can happen
in paired learning: The structural information of one ob-
ject can be copied into multiple patches and get enhanced
differently, and the border between different patches can be
concatenated unnaturally. Consequently, even if the partial
details are greatly improved, the global image quality may
still not be visually pleasing.

Ambiguity and Divergence in Unpaired Training -
Without the implementation of a pixel-wise loss function, it
appears exceptionally difficult to progress the training with
tight constraints. However, there also exists weakly super-
vised approaches in using Generative Adversarial Network
[45, 20] and Style Transfer methods [14]. However, this
kind of methods requires highly selective training strate-
gies and carefully-designed network structures Due to the
weakly supervised manner, the convergence direction of
network training will probably be ambiguous and under-
determined. Also, especially for night-view images, weak
constraints would always give rise to clear noise patterns in
the generated images.

In this thesis, we particularly focus on solving the three
aforementioned problems when using real-world images to
learn the enhancement transformation. To deal with mis-
alignment in paired training strategy, we propose the pixel-
shift insensitive color loss to alleviate the situation. To com-
pensate for the semantic loss, we propose the sentiment-
based locality enhancement to reinforce semantic details
of individual regions. Coping with the ambiguity of train-
ing directions, we combine the paired DPED method with
the weakly supervised structures, which establishes a two-
phase enhancement procedure.

The main contribution of our work can be summarized
in the following perspectives:

• First, we thoroughly investigate previous algorithms
for each sub-task of the overall image enhancement,
such as super-resolution, deblurring, denoising and
style transfer. Based on the performance in those sub-
areas, we assess the dominating factors for image qual-
ity and gain further insight when designing our univer-
sal framework concerning all those sub-problems. p

• Second, we proposed a novel method which divides
the low-light image enhancement into two parts: de-
tailed texture enhancement and global style enhance-
ment. We first devised an enhanced DPED structure to
impose the pixel-wise constraints, while intermediate
generative images are then incorporated with the pro-
fessional style images and enhanced in a weakly su-
pervised manner. Different from the previous method
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which only accomplishes their aesthetic enhancement
on one label, our method aims to explicitly achieve fea-
ture reinforcement and style augmentation under the
assistance of both ground truth image and reference
style image.

• Third, we explore the effect of combing image decom-
position and multi-domain image to image translation.
The first part is self-supervised intrinsic image decom-
position, which learns from unlabeled real-world in-
trinsic data. With the shading, reflectance, and light-
ing components in hand, we use multi-domain GAN
architecture to learn the partial enhancement of exist-
ing datasets which are specialized in color enhance-
ment, texture enrichment, and noise reduction. We
train this two parts together and aims at learning the
full enhancement transformation for mobile image in-
put.

• Fourth, we contribute a comprehensive low-light
mobile-DSLR dataset. The dataset contains RAW
file taken by ourselves and various JPEG file down-
loaded from FLICKER. All the RAW files we col-
lected come with a human-retouched version from pro-
fessional photographers. The dataset contains over 100
scenes of night view and includes over 1000 images.

2. Related Work
2.1. Image Super-Resolution

Image resolution has always been a critical criterion for
image structure and edge enhancement. Pioneering ap-
proaches use interpolation techniques in sampling theory
[27, 43] and adopt statistics of natural images to reconstruct
realistic textures in the output images [44, 37]. Advanced
works often targeted at learning the mapping function from
ILR to IHR with techniques like sparse coding [42, 41] and
neighborhood embedding [6].

Recently, the superior performance of deep neural net-
works also has significant impact on low-level vision tasks
such as super-resolution. SR using convolutional neural net-
work was first proposed by Dong at [7], with the acceler-
ated version with deconvolution at [8]. Kim implemented
residue learning at the task of SR [24] and designed more
in-depth architecture [28] which dropped the batch nor-
malization layer to achieve state-of-art performance in the
most recent NTIRE super-resolution challenge [38]. Apart
from Single Image Super-Resolution (SISR), other multi-
frame solutions have also been proposed for video super-
resolution [25, 26]. When adopting super-resolution on one
specific frame, the multi-frame methods predicts the next
framework based on prior knowledge, by which achieves
high inter-frame consistency and structure fidelity in the re-
sulted videos.

Figure 3. Side-by-side denoise comparison: (a) Denoised result
using real-world data for training (training data generated by
multi-frame denoising). (b) Denoised result using synthesis data
for training (training data generated by adding Gaussian noise to
clean images). (c) Close up comparison, where on the top is the
closeup of (b), on the bottom is the closeup of (a). It can be ob-
served that using real-world data for training leading to obvious
improvement in the single sub-task of denoising, which could in-
dicate that the potential problem of using synthesized training data.

Regardless the emerging progress in the subtask of
super-resolution, until now, existing works of super-
resolution take simple downsampling methods like the bicu-
bic interpolation to synthesize the lack of details in real-
world scenarios. Nevertheless, such deterministic down-
grading methods could be problematic. In the side-by-side
comparison of DSLR and mobile phone images, lacking
in details might not correspond with what people expect:
There exist salient differences between the images of mo-
bile phone and downsampled version of DSLR, which indi-
cates the drawback of generating training data by theoretical
downsampling.

2.2. Image Denoising and Restoration
Image denoising and restoration is another critical is-

sue in image enhancement task for images generated from
tiny mobile sensors under low-light condition. In the past
decades, extensive methods of denoising and image restora-
tion methods have been looked into. Early methods like
BM3D [11] and other dictionary-based methods [40, 9, 17]
have demonstrated promising capabilities in image restora-
tion tasks including denoising. Later, Burger at [4] chal-
lenged BM3D by using the Multi-Layer Perceptron to learn
the end-to-end denoising transformation from noisy images
to their clean versions. Stacked denoising auto-encoder then
exploited the unsupervised pre-training to minimize the re-
construction error for better-denoised images [39]. Deep
convolutional neural networks later improve the previous
result by using deep auto-encoders with skip connections
[31].

However, most of the previous denoising frameworks
are not based on real-world cases. Instead of conducting
experiments on low-light images with severe noise, nearly
all of the learning methods simply utilize Gaussian white
noise or Poisson noise to generated the noisy counterparts
from the clean images. Although training on synthesized
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images achieves impressive results in quantitative measure-
ment such as PSNR, but still performing poorly when di-
rected adopting on the real-world noisy images generated
by mobile phones.

2.3. Color and Contrast Enhancement
Image colorization and contrast enhancement are espe-

cially important for low-light image enhancement. Since in
the night-view dataset, we always find that the images are
in low dynamic range and always have intensity around 0-
20. The most commonly used method is through Histogram
Equalization(HE)[34]. Histogram Equalization is built on
the assumption that when we convert the probability den-
sity function into a uniform distribution, it will maximize
the information entropy and achieve the greatest contrast.
HE remaps the gray levels of the image histogram based on
the input cumulative distribution function. After the remap-
ping, the image histogram will always fill in the whole dy-
namic range.

2.4. Image-to-Image Translation
The process of enhancing a low-quality image to the

high-quality one can be considered as the specialized task of
image-to-image translation. Before us, precedent work has
introduced the idea of image-to-image translation in [18],
which employed the non-parametric texture model [13] on
an input-output image pair. Recent methods used end-to-
end training to learn the translation function from the input-
output pairs [29]. Pix2Pix was then proposed by Isola at
[21], which employed the conditional generative adversarial
network [15] to the learn the translation mapping between
the pairs.

Recently, with GAN-based conditional image genera-
tion being actively studied, multi-domain image-to-image
translation has become possible. Star-GAN has been newly
proposed by [10], and is capable of learning the mappings
among multiple domains, using a mask vector on a single
generator and discriminator.

2.5. Photorelistic Style Transfer
Photographic style transfer techniques often seek to

transfer the style of the original image to another input im-
age, as if it is taken under different illumination, time of
day or weather. Global style transfer process an image by
applying a spatially-invariant enhance function to handle
tone curves and global color shifts. [12] While the local
style transfer focuses more on sentiment regional transfer
such as time-of-day hallucination [22], weather-to-season
change [22] and painterly stylization [1]. One possible real-
world application would be deep photo style transfer [14],
which focuses on the styling the original image while keep-
ing the result photorealistic. One of our proposed methods
will utilize the idea of deep style transfer and set the refer-

Figure 4. The overall architecture of proposed paired learning pro-
cedure: Training network consists of 1 9 ⇥ 9 layer followed by
4 residual blocks, then concatenated with 2 3 ⇥ 3 layers and 1
9 ⇥ 9 layer. Discriminator network consists of a similar structure
of VGG networks and has a fully-connected layer at the bottom.
VGG-19 network is used for calculating the content loss between
generated image and its ground truth.

ence image as an ideal aesthetic reference while the original
image as the intermediate result from phase-1 enhancement.

2.6. Intrinsic Image Decomposition
From the perspective of image formation, each image

can be defined as the pixel-wise producty of the Albedo A,
which defines a surface’s base color and shading S , which
defines the captured influence of light reflection and shad-
owing on each pixel: I = A · S . Extensive work was fo-
cused on how to recover A and S correctly given an color
image input I[16]. Consider the real-world ground truth
for this topic is extremely scarce, there exists only alterna-
tive human-labeled intrinsic evaluation for intrinsic[3]. Un-
til very recently, only computer-generated intrinsic dataset
is available. The paper [23] proposed a method to learn the
intrinsic without ground truth in real life, using two VAEs
with cycle loss, operated in a self-supervised manner.

Although the intrinsic of images indeed reveals physical
attributes like reflectivity, shading in different components,
there is no previous work utilizing intrinsic decomposition
in image enhancement problem. We describe the image en-
hancement problem as a ’decompose-enhance-reconstruct’
process and utilize the self-supervised intrinsic model to in-
ference the real-life intrinsic for the mobile image.

3. Methods
We propose two methods to enhance the mobile image

and learn the transformation. The first method is Multi-
Phase Semantic Enhancement (MPSE) and the second
method is Multi-Domain Intrinsic Enhancement (MDIE).
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Figure 5. Comparison between responses to small image pixel-
shift of MSE loss and Color loss. After applying the Guassian filter
in the original feature maps, the color loss is more pixel-invariant
to the MSE loss

3.1. Multi-Phase Semantic Enhancement
Our first algorithm focuses on image enhancement in

multiple phases: paired pixel-wise learning, unpaired se-
mantic style reinforcement, and post-processing optimiza-
tion. We seek to improve the image quality from the micro-
scopic view(pixels, textures) to macroscopic view(semantic
regions, contrast, image style).

3.1.1 Paired Pixel-wise Learning

Color Loss Consideration As aforementioned in the mis-
alignment problem in the introduction, paired images are
taken from mobile devices and DSLR professional cameras,
though shot on the same scene, are impossible to achieve
perfect alignment. The fundamental strategy is to abandon
the per-pixel loss and to scan the original feature maps by
Gaussian filters with pre-computed Gaussian weights, re-
sulting in invariant blurred color features. More specifically,
input image X and Y will be converted to blurred image Xb

and Yb.

Xb(i, j) =
X

m,n

Xb(i+m, j + n) ·G(m,n)

and the 2D Gaussian blur operator is given by

G(m,n) = A · exp(�
(m� µx)2

2�2
x

�
(n� µy)2

2�2
y

)

As part of the loss function, Color loss between ground truth
and generated image can be represented as:

Lcolor(X,Y ) = kXb � Ybk
2
2

The idea behind this loss is to evaluate the difference in
brightness and contrast between the images instead of con-
sidering the detailed resolution improvement. One advan-
tage of this method is that color loss is more insensitive to
small shifts between pixels as demonstrated in the figure 9.

Figure 6. Separation of convolutional layer into depthwise and
pointwise layer. Depthwise layer fulfills the task of feature ex-
traction, and pointwise layer combines the essential features. The
distribution of jobs improves the training efficiency of neural net-
works without much loss of accuracy

In this way, we are able to compute the loss function even
without perfect alignment between patches.

DPED+ The overall architecture applies the conven-
tional residual block structure: starting from 9 ⇥ 9 con-
volutional layer, we implement four residual blocks, each
consists of two kernel size 3 ⇥ 3 layers alternated with one
Batch-Normalization Layer. After the residual blocks, we
concatenate kernel size 3⇥ 3 layers and one last kernel size
9 ⇥ 9 layer. All layers are followed by LeakyReLU layer
with a = 0.005. The color loss and total variation loss are
calculated from the 9⇥9 final layer. We also implement dis-
criminator network to calculate the texture loss between and
VGG-19 to calculate the content loss between the ground
truth and generative images.

In order to accelerate our training progress since it is
only the first procedure, we replaced the traditional convo-
lutional layer with depthwise separable layer and pointwise
layer introduced in MobileNet [19]. For MobileNet [19],
the depthwise convolution applies a single filter to each in-
put channel, while pointwise convolution applies a 1 ⇥ 1
convolution to combine the previous outputs. Essentially,
a traditional convolutional layer overloads its functionality
by filtering and combining the filtered outputs in a single
step. However, the separated depthwise and pointwise con-
volution have a more precise distribution of work and out-
perform in the sense of efficiency. We experimentally show
that this simple separation will improve the training effi-
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Figure 7. The network architecture of jointly enhancement factor ⇤ and the output image. The right side illustrates the network structure
for style loss computing. We adaptively adjust our enhancement factor in regional basis and take into account the proportional information
iteratively. The left side is the Gram matrix distance calculation from each region and each layer.

ciency by 40% while only suffering from PSNR degradation
around 0.6 dB.

3.1.2 Semantic Style Enhancement

The second-phase enhancement takes the generated image
I from DPED+ model as input and reference R as guidance
to generate enhanced image O, which is similar to the guid-
ance image. Our framework in this part mainly consists of
a night scene weakly-supervised enhancement network and
a reference recommendation network.

Semantically Adaptive Enhancement The main objec-
tive of taking the style reference R into account is to take
advantage of the photorealistics aesthetic style and perform
the aesthetic adjustment automatically. Motivated by the
methods of [14], we basically implement the Gram matrix
to calculate the style loss in each VGG-19 layer of the im-
age feature map. To differentiate the enhancement degrees
in different regions within a single image, we adopt the se-
mantically adaptive factor ⇤ and obtain the style loss:

Ls(O,⇤) =
X

r,l

⇤l

r

2N l2
kGl

r
[O]�Gl

r
[R]k22

where r is the sematic content label for different semantic
regions (i.e river, sky, building, etc), ⇤l

r
represents the en-

hancement factor in VGG layer l and semantic region r, and

Nl is the number of feature maps in layer l. Gl

r
[O] is the

Gram matrix corresponding to the feature map F l

r
[O] and

the semantic mask M l

r
[O]. For each segmented region of

at layer l, we calculate the Euclidean distance between the
generated output’s and reference’s Gram matrices as the re-
gional style loss. Our total style loss of layer l is calculated
as a weighted combination of all the regional style loss,
which are amplified by the individual enhancement factor
⇤l

r
.
The aim of our carefully designed semantic enhance-

ment factor is to intensify the difference between the train-
ing of high-frequency details and low-frequency structures.
According to our observations, different regions within the
same photo always need different treatments, for instance,
sky regions often lack structural details, and they normally
require less attention than the texture-fruitful building re-
gions. While most current CNN approaches ignore the re-
gional difference and perform the image patch training on
an equal basis, our method emphasizes on the discrepancies
and tries to avoid the inappropriate balanced stylization.

Self-learning Enhancement Factor ⇤ Manual setting
or hand tuning the enhancement factor is inappropriate and
time-wasting. Consequently, we propose a self-learning
strategy to tune the enhancement factor along with the trans-
ferring the output image to the reference style. First of all,
we utilize the global pooling layer after conv5 3 to extract
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Figure 8. Pipeline of Multi-Phase Semantic Enhancement (MPSE): 1st Phase: pairwise supervised training from image O to the enhanced
groundtruth image GR using residual blocks and Generative Adversial Networks (GAN). 2nd Phase: unpaired semantic style refinement
and global enhancement: Using photorealistic style transfer techniques to convert the style of image I to the style of reference image R

3rd Phase: Post-processing using Histogram Equalization and Gamma Correction to fulfill human appreciation

fixed size feature information from the generated images
and reference images, which are concatenated as the input
of a fully-connected layer. This fully-connected layer aims
at learning the enhancement factors of different classes and
different layers. Thus the output number of this FC layer
would be L ⇥ M , where L is the number of VGG layers
and M is the number of classes in semantic segmentation.
By regional heuristics we set the influential factor of the
different region is proportional the area of semantic regions
↵l

r
. To normalize the local enhancing effect, we implement

the softmax function as:

⇤l

r
=

e↵
l
rH

l
r[O,R]

P
r
e↵l

rH
l
r[O,R]

where ⇤l

r
is the semantic enhancement factor of layer l in

region r, ↵l

r
is the regional area indicator to represent the

influence of semantic region in the training process, which
are calculated from the segmented content image Seg(O)
and reference image Seg(R). H l

r
is the individual fully-

connected layer output of the concatenated feature map at
conv5 3 in VGG19. The whole ratio indicates the softmax
function of the semantic enhancement vector.

Photorealistics Transfer Besides considering the effect
of style loss, to achieve the photorealistic transfer, the tex-
ture structure and details of the original image I should be
preserved. Consequently, we utilize a weighted combina-
tion of content loss Lc and photorealistic regularization loss
Lm to maintain the local fidelity of structural information
for the enhanced image O.

Lc(O) =
X

l

↵l
1

2N lDl
kF l[O]� F l[I]k22

Lm(O) =
X

c2r,g,b

Vc[O]TMIVc[O]

where ↵l serves as the content weight in each layer. Dl and
N l are the dimension and number of the vectorized feature
map respectively. Vc[.] refers to the vectorized c channel
of the image, and MI is the linear system defined in the
Matting Laplcian Matrix.

Final Objective Function and Optimization Our final
objective function is a weighted combination of semantic
adaptive style loss Ls, content loss Lc and photorealism
regularization loss Lm:

L(O,⇤) = Lc(O) + �Ls(O,⇤) + �Lm(O)

where � is the weight of the total style loss, � is the weight
to balance the photorealism regularization loss Lm.

We apply the alternate updating scheme t optimize our
final objective function. In each step, we fix one value
and employ the stochastic gradient descent to update an-
other. We optimize the output image by computing @L

@O
in

the backpropagation procedure in the total loss. As for the
enhancement factors, we update the gradients of fully con-
nected layer as follows:

@L

@Wci+j,k

=
X

r,l

@L

@⇤r]l

⇤l

r

@W↵l
r
H l

r
[O,R]i,j

@W↵l

r
H l

r
[O,R]i,j

Wci+j,k

=
X

r,l

L
r,l

s
↵rl(�i,l�j,r⇤

l

r
� ⇤l

r
⇤i

j
)H l

r
[O,R]k

where L s is total style loss, c is the number of seman-
tic classes, (i, j) states it is the i-th layer and j-th class, k
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shows that it is the k-th element of the global pooling fea-
ture vector. ci + j is the row, and k is the column of fully
connected layer’s parameter matrix.

Reference Recommendation Network The selection of
appropriate reference images is crucial in night-view image
enhancement. We selected up to 4000 professional night-
view night photographs from image sharing websites, such
as Flicker. We basically select 5 axiomatic semantics from
the websites such as sky, building, river, road, and vehi-
cles. A variety of shooting positions and styles (sky view,
panoramic,etc.) are considered to diversify our proposed
dataset. In order to retrieve the appropriate reference style
image from the large dataset, we first define the semantic
metric Dsem as the Euclidean distance of features in FC-
8 layer of pre-trained VGG-16 classification network, the
semantic similarity is defined as the following:

Dsem = kffc8(I1 � ffc8(I1)k2

where ffc8 defines the FC-8 features of an image. For an
original image xi, we find best 60 semantically similar im-
ages in the dataset for the further selection. We not only
requires the close relationship between semantic contexts
of two images, but also an appropriate artistic style. By
selecting 10 of the 60 candidate samples, we label them as
positive references xp1 , xp2 , ..., xp10 and the rest as negative
references xn1 , xn2 , ..., xn50 . Our goal is to minimize the
distances between the anchor x and positive set and maxi-
mize the distances between x and negative set:

Lref = argmin
L

[
10X

j=1

kf(xi)�f(x
pj

i
)k2�

50X

k=1

kf(xi)�f(x
nk
i
)k2+↵]†

where ↵ is a margin to enforce a minimum distance be-
tween positive and negative samples, f is the output feature
from our recommendation network, and [.]† denotes ReLU
function.

To build a simple structural recommendation system, we
additionally include a fully-connected layer after FC-8 layer
of the pre-trained VGG-16 network. Only the parameters of
the extra fully-connected layers are tuned, and previous pa-
rameters are all fixed during the training stage. After train-
ing our images upon the artistic night-view dataset, our ref-
erence recommendation network will automatically provide
the corresponding appropriate reference image for an input
image unseen before.

3.1.3 Post-processing Optimization

After the deep neural network training of the original im-
ages, we further investigated two traditional image process-
ing methods(Histogram Equalization, Gamma Correction)
to improve our image qualities further.

Figure 9. Comparison between responses to different light inten-
sity of human eye (Gamma 1/2.2) and commonly-used cameras
(Linear).

Histogram Equalization Histogram equalization is one
of the efficient image enhancement method to adjust the
contrast. Based on our previously computed regional influ-
ential factor ↵l

r
and enhancement factor ⇤l

r
, we are able to

perform the image decomposition recursively and generate
sub-images of different semantic regions. By adapting the
cdf (cumulative density function) to the original histogram
in each sub-image, we can convert the image histogram into
a uniform distribution and maximize the information en-
tropy in each semantic area:

T (k) = floor(L� 1)
kX

n=0

pn

d

dy
(

Z
y

0
pY (z)dz) = px(T

�1(y))
d

dy
(T�1(y))

d

dx

���
x=T�1(y)

d

dy
(T�1(y)) = 1

which means pY (y) = 1
L�1 , HE flattens the histogram in

individual semantic region and improve the contrast.
Gamma Correction Based on the Weber-Fechner’s

Law, we discovered that the response of human eyes to dif-
ferent illuminance conditions follow a logarithm curve and
react stronger to low-light condition than the strong-light
condition. Consequently, when we take the physical reac-
tion of human being into account, we proposed to follow the
logarithm curve and adjust it using gamma correction 1/2.2
rather than linear, which serves as the last procedure of our
first algorithm.

3.2. Multi-Domain Intrinsic Enhancement
We describe the second model for image enhancement

as a ’Decompose-Enhancement-Reconstruct’ pipeline. In
this part, we first discuss a self-supervised framework to
obtain the intrinsic components of real-life images, then we
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Figure 10. Intrinsic decomposition of the mobile and DSLR image: (a) is the RGB image, (b) is the reflectance map, (c) is the shading, (d)
is a zoom-in observation of the shading. The first row is the mobile image; the second raw is the image taken from DSLR. We can observe
that the reflectance map largely affects the color and contrast of the image whereas the shading affects the texture and noise aspects of the
image. A zoom-in sample (d) demonstrates the concentration of noise in the shading.

discuss a specialized GAN [10] architecture which handles
multi-domain image translation for overall image enhance-
ment. Later, the final enhanced image is constructed by an
intrinsic composition framework, which utilizes the output
of GAN introduced. In the last, we show that all compo-
nents can be trained and fine-tuned together as an automatic
three-step framework.

3.2.1 Self-Supervised Intrinsic Decomposition

In intrinsic decomposition, image I is described as the
point-wise multiplication of the reflectance map A and
shading S .

I = A · S

In some paper, the reflectance map A is also called Al-
beto. Until now, there exists merely work attempting to im-
prove the image quality by manipulating its intrinsic decom-
position. In our experiment of splitting mobile and DSLR
image into Albeto and shading, we find that the effect of
color and contrast is centralized in Albeto, whereas the im-
pact of noise and texture is centralized in the shading. The
experiment result is shown in figure 10.

We have the following observation: In daylight condi-
tion, the ambient light is relatively abundant, and the domi-
nating difference of mobile phone and DSLR is mainly re-
vealed in Albeto. In the night-scene situation, with poor
lighting condition, the dominating difference of mobile
phone and DSLR is revealed in shading. This assumption
allows us to explore image enhancement from different as-
pects by finding its intrinsic components.

Reconstruction Loss Before our attempt, finding the
possible intrinsic components for images has been exten-
sively studied. Most data-driven methods rely solely on
ground truth labelling, and because hand-labeling Albeto
and shading are nearly impossible to achieve, most meth-
ods still rely on computer-generated virtual data like MPI
Sintel Dataset [5]. As a result, those methods perform not
well in real-life photos. The previous model assumes access
to ground truth labels for all inputs and does not explicitly
model the reconstruction of the input image based on intrin-
sic image predictions.

To alleviate that problem, the intrinsic model should be
trained with real data, and we introduce a network with self-
supervision proposed by [23] to find real-life intrinsics. The
basic idea is to reconstruct the intrinsic predictions back to
an RGB image, and the image should look like the input
RGB image as close as possible. If F is the algorithm find-
ing the intrinsic with

F(I) = (A,S)

Then we aim to minimize:

kI �A · Sk
2
2

Despite the intention is quite reasonable, directly mini-
mizing the reconstruction loss could be erroneous. A sim-
pler meaningless solution that yields zero reconstruction is:

A = I,S = 11T

where 1 is the matrix with all elements to be 1. This in-
dicates the necessity of substituting the reconstruction dot

9



Figure 11. Network Architecture of Multi-Domain Intrinsic Decomposition (MDIE): The overall network finds the input image’s intrinsic
decomposition, then concat the albeto and shading into a six-channel input and pass it the multi-domain GAN in the second. The GAN
then utilize several datasets specified for partial enhancement such as color, noise, and texture, by the help of a masked vector, we expect
the final generator can output a comprehensively enhanced image when we name all label to ’high-quality’. After the multi-domain GAN,
we use another intrinsic network to reconstruct the intrinsics back to an enhancement image. The reconstruction loss is also calculated in
the last step.

product by another composition algorithm F
0 so that the re-

construction loss is:

Lrec = kI � F
0(A,S)k2

This provides our intrinsic prediction framework a possible
source to learn an approximation of the exact decomposi-
tion from unlabelled data.

Symmetric Intrinsic Network In our design, we set
both the decomposition framework F and composition
framework F

0 to be an autoencoder-autodecoder archi-
tecture. The encoder has 5 convolutional layer with
{16,32,64,128,256} filters of size 3⇥ 3 and stride 2. Batch
normalization and ReLU is used in every layer. The decoder
has the same architecture with the reversed order, with fi-
nally an output layer with six output channels dedicated to
Albeto and ground truth. Sub-Pixel upsampling [36] is used
after the convolutional layer to enlarge the feature maps and
speed up the upsample operation, which is proved to be
much faster than the deconvolutional layer [32].

3.2.2 Multi-Domain Image-to-Image Translation

The task of image enhancement can be thought as a pro-
cess of image-to-image translation, where we expect the

translation is from a ‘mobile-quality’ image to a ‘DSLR-
quality’ image. Intuitively, we can define the former set as
‘low-quality’ domain and ’high-quality’ domain and find a
translation between the two domain. However, this attempt
suffers from two potential obstacles:

• First, training a dual-side image-to-image translation
network like [2, 21] requires pair-wise data, where the
image in ’mobile-quality’ and ‘DSLR-quality’ should
be precisely aligned. In reality, even if the two images
are taken in the same scene and with the same setting,
image registration is hard to achieve due to different
optics and distortions.

• Second, training directions is unclear with hidden con-
tributing factors behind ’high-quality’. Usually, those
factors are mixed, including high dynamic range, vi-
brant colors, low noise level, etc. Simply training the
network in end-to-end fashion will inevitably cause
ambiguities in enhance directions. For instance, the
noise pattern might be indistinguishable with some
structural information, which leads to the appearance
of noise and loss of some structural information in the
final results.

To avoid these two obstacles, we utilize datasets ded-
icated to the individual factor of image enhancement and

10



propose a vector-mask GAN architecture to achieve image-
to-image translation in multiple domains. By this way, we
can handle the problem absence of one overall enhancement
dataset with perfect alignment. Because for one time we
only train the network with a specific enhancement factor
with a mask vector, the problem of ambiguity in training
direction can be alleviated.

We denote the term attribute as a meaningful enhance-
ment factor inherent in an image such as color, texture, or
noise level and attribute value as a particular level of the
attribute, such as low-quality or high-quality. We further
denote domain as a set of images sharing the same attribute
value. For example, images of low-quality in color perspec-
tive can be one domain whereas images of high-quality in
color perspective can be another domain.

Our goal is to train a single generator G that learns the
mappings among the three domains we specified: color, tex-
ture, and noise. To achieve this, we train G to translate an
input image x into an output image y conditioned on the
target domain label c, G(x, c) ! y. We randomly generate
samples from the three domains and train G from three dif-
ferent enhancement factors. We also introduce an auxiliary
classifier [33] that allow a single discriminator to control
multiple domains. In that way, our discriminator produces
probability distributions over both sources and domain la-
bels, D : x ! {Dsrc(x), Dcls(x)}.

Mask Vector To handle the lack of some labels when
training sample in one domain, we introduce a mask vector
m to let the GAN explicitly ignore unknown dataset and
only concentrates on one specific dataset. We use an n-
dimensional one-hot vector to denotes m with n being the
number of datasets we used. In addition, we define the label
c as a vector in a unified version:

ec = [c1, ., ci, ., cn,m]

If here we input the i-th dataset, then only ci is assigned
to 1 and others is assigned to 0. In our experiments, we
have three datasets dedicated to color, texture, and noise.
Then the n is set to be 3. In each dataset, we only have two
attribute value: low-quality and high quality.

Adversarial Loss Similar to previous GAN design, to
ensure the images in one specific domain indistinguishable
from real images in that domain, we define the adversarial
loss as:

Ladv = E[logDsrc(x)] + E[log(1�Dsrc(G(x, c)))]

where G generates an image G(x, c) conditional on the in-
put x and the target domain label c, whereas D is designed
to distinguish between real and fake high-quality image. We
further denote the term Dsrc(x) as the probability distribu-
tion over sources given by D. In this setting, the generator
D aims to minimize the objective, while discriminator D
tries to maximize the objective.

Domain Classification Loss For a given input image x
and a target domain label c, our goal is to translate x into
an output image y, which is appropriately classified into the
target domain c. To satisfy this requirement, an auxiliary
classifier is added on top of the discriminator D and the
domain classification loss is imposed when optimizing both
the discriminator D and generator G. We use the domain
classification loss of real images to optimize D:

L
r

cls
= Ex,c0 [�logDcls(c

0
|x)]

where the term Dcls(c0|x) denotes a probability distribution
over domain labels calculate by D. By minimizing this ob-
jective, D learns to classify a real image x to its correspond-
ing original domain c’. Then we use domain classification
loss of fake images to optimize G:

L
f

cls
= Ex,c[�logDcls(c|G(x, c))]

where G attempts to minimizing this objective to generate
images that can be classified into the target domain c.

Cycle Reconstruction Loss Consider our task handles
a multi-domain problem, minimizing the loss mentioned
above does not guarantee the translated image preserve the
enhancement factors of its input images while only chang-
ing domain-related part of inputs. To address this potential
problem, we introduce a cycle consistency loss [45] defined
as:

Lcyc = Ex,c,c0 [kx�G(G(x, c), c0)k]1

where G takes the translated image G(x, c) and the domain
label of the original input c0 as input and attempts to recon-
struct the original image x.

Full Objective Optimization The full objective func-
tion to optimize generator G and discriminator D is:

LD = �Ladv + �clsL
r

cls

LG = Ladv + �clsL
f

cls
+ �cycLcyc

where �cls and �cyc are hyper-parameters that balance the
relative weight of domain classification loss and cycle re-
construction loss. In our experiment, �cls is set to be 1 and
�cyc is set to be 10.

3.2.3 MDIE Ojective Optimization

We consider the loss proposed in the intrinsic part and
multi-domain translation part when we train the network
altogether, ↵ and � are also the weight factor balancing
the two reconstruction loss to stabilize the convergence of
learning to predict the intrinsics:

LD = �Ladv + �clsL
r

cls

LG = Ladv + �clsL
f

cls
+ �cycLcyc

Lrec = ↵kILQ�F
0(ALQ,SLQ)k

2+�kIHQ�F
0(AHQ,SHQ)k

2
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Figure 12. Overview of Datasets: From left to right is: the Enriched DIV2K Dataset, DPED PR Dataset, Mobile-DSLR UPR Dataset,
Damstadt Noise Dataset, MPI Sintel Dataset.

4. Dataset
4.1. DIV2K Dataset

Inspired by the NTIRE 2017 Challenge [38] on Sin-
gle Image Super-Resolution competition, we obtained the
newly proposed high-quality data-set DIV2K for our tasks.
Consisting of 800 training images, 100 validation im-
ages and 100 test images shot by DSLR cameras, DIV2K
dataset outperformed most existing benchmark datasets and
achieved excellent training results. Considering DIV2K
dataset only consists of images under daylight, we espe-
cially add 500 night images of various low-light condition
shot by our DSLR.

4.2. PR (Paired) Dataset
Apart from the DIV2K dataset which specified for one

sub-domain of image enhancement task, we also consid-
ered the general image quality assessment for our training
as mentioned earlier method, in whose case we are aim-
ing at collecting paired image set without the restrictions
of perfect alignment.Apart from the existing DSLR Photo
Enhancement Dataset (DPED) at hand, we collected over
800 photos (400 pairs) for specific night-view enhancement
tasks. In each pair, the high-quality image is a 24-megapixel
image shut by our full-frame DSLR, equipped with six stops
of exposure to achieve higher dynamic range; whereas the
low-quality image is a 12-megapixel image shut by our
iPhone6S, without any further adjustments. All the photog-
raphy devices were mounted on the tripod and controlled
by a shared shutter, which ensures paired images have been
shot at the same time. During the shooting procedures, we
adjusted digital parameters and device settings and tried
our best to maximize the alignment ratio between paired
images. Together our PR dataset consists of over 2K im-
age pairs, with 60% being the day view pairs coming from
DPED dataset, and 40% being the night view pairs coming
from our contribution.

4.3. UPR (Unpaired) Dataset

One benefit of using unpaired framework for training
is the profusion of vast images of different qualities on
the Internet. More than reusing the previous images in an
unpaired manner, we claw more high-quality images shot
by professional photographers from Flickr Spotlight API.
Those images are not only rich in texture and detail but also
superior in the lighting condition, color balancing and struc-
ture after professional human retouch. The UPR dataset
we collect contains two parts: the low-quality part contains
over 500 images shot by our iPhone, and the high-quality
part contains over 2000 professional Flickr images.

4.4. Damstadt Noise Dataset

The lack of the ground truth data causes the benchmark
of the denoise task relying on synthesized i.i.d. Gaus-
sian noise. This approach can be problematic, considering
noise in real images far from i.i.d. Gaussian. The work
[35] presents a novel denoising dataset called the Darmstadt
Noise Dataset (DND). It consists of 50 pairs of real noisy
images and corresponding ground truth images that were
captured with consumer grade cameras of different sensor
sizes. For each pair, a reference image is taken with the
base ISO level while the noisy image is taken with higher
ISO and appropriately adjusted exposure time. The refer-
ence image undergoes a careful post-processing entailing
small camera shift adjustment, linear intensity scaling, and
removal of low-frequency bias.

Additionally, considering the noise pattern is different
for different sensors such as mobile phones and DSLR cam-
eras, constructing a specialized denoising dataset is essen-
tial. Here we sample data under different ISO setting from
Mobile Phone and DSLR, then use the post-processing tech-
niques in [35] to approximate the denoised ground truth.
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4.5. MPI Sintel Dataset
The MPI Sintel dataset is initially proposed in [5] for

optical-flow evaluation, where it provides depth image, dis-
parity maps, optical flow maps, stereo images, and albeto in
an animated movie. We use the albeto to infer the ground
truth shading, and use it to pre-train the first intrinsic de-
composition VAE network.

5. Experiment
5.1. MPSE Experiment

Although we have set our objective to improving mobile
phone image qualities generally by deep learning methods.
we conducted our experiments especially on low-light im-
ages since under night-view situations, images shot by mo-
bile devices are more likely to exhibit problems like lacking
details, high noise, and low dynamic range. The last term
we have completed most state-of-the-art Super-Resolution
deep neural networks and explored their advantages and dis-
advantages. Consequently for this term, when employing
our methods to low-light image enhancement tasks, we can
still make use of the benchmarks and training strategies to
maximize our performances.

Convolutional Neural Network Models
Iterations 2⇥ 104 2⇥ 104 7⇥ 104 7⇥ 104

Revised Models PSNR SSIM PSNR SSIM
Baseline 26.3455 0.9112 27.8025 0.9338
VGG Loss(VL) 27.4288 0.9493 28.8042 0.9703
l1 + l2 26.2453 0.8954 26.8251 0.9122
MobileNet 25.2410 0.9321 27.4123 0.9416
LReLU(LR) 26.5448 0.9107 27.7239 0.9293
Contrast(HE) 27.0145 0.9220 28.0112 0.9445
VL+LR+HE 27.4338 0.9420 29.2002 0.9754

DPED+ Phase According to our observation in the
benchmark experiment above, we notice that leaky ReLU,
MobileNet and VGG loss all help boost the network per-
formance, so we implement our pair-wise training network
using the similar techniques. In the actual experiments, we
find that Leaky ReLU helps the network converge faster so
that there is no need for extra iterative training, MobileNet
helps divide the feature extraction and combination tasks
and improve the training accuracy, VGG content loss aug-
ment extra regularizations and keep the fidelity of the orig-
inal image. For the consideration of overall efficiency, we
choose the Nvidia Titan X GPU for 30K iterations, setting
the batch size 50. The parameters of the neural network
were optimized using Adam optimizer for gradient descent
with learning rate 5e-4. In every 10K iterations, we cut
down the learning rate to the half of the original one. All
the training curves are recorded in the Tensorboard, and we
can see a promising trend of convergence.

Semantic Style Enhancement In order to retrieve the
style image from the original one, we incorporate with PSP-

Net with ADK20 dataset to perform the semantic segmen-
tation and merge the similar contents into the same seman-
tic labels. We select the balancing weights as {�, �} =
{100, 11} as heuristics. The initialization of parameters is
aiming at balancing the scale of different losses to make
them effective. In the actual experimental training, we aug-
ment the original loss function with total variation loss Ltv

to make the convergence direction towards sharp edges and
sparse representations.

Post-Processing Optimization In order to optimize the
effect of image enhancement and make it suitable for artistic
appreciation, we propose the Recursively Histogram Equal-
ization (RHE) method according to the enhancement factor
⇤ in conv5 3 and gamma correction at ratio 1/2.2. Com-
paring to the CycleGAN, DeepTransfer and Deep Analogy
method, our method shows not only significant improve-
ment in structural details and overall contrast but also ex-
hibits promising result in the perceptual user study.

Perceptual User Survey Based on the subjective nature
of image enhancement tasks, we additionally conducted
a perceptual user survey to evaluate our performances of
pipelines. By recruiting 40 professional photographers and
artists, we provided them with 15 sets of images; each
contains seven night-view photos including original im-
age, Histogram Equalization, Cycle-GAN, WESPE Deep-
Transfer, Deep Analogy and MPSE (our approach). The
users are asked to rank them according to personal prefer-
ence and artistic taste. The detailed survey results are listed
below.

Night-View Image Enhancer Models
Night-view Models PSNR SSIM 1st

Choice
2nd
Choice

Input 26.3455 0.8112 0.0 0.6
HE(Contrast) 26.3421 0.8453 5.4 4.0
Cycle-GAN 27.4390 0.9239 18.2 16.8
WESPE 26.8442 0.8902 12.0 10.4
Deep-Transfer 27.5104 0.9177 25.0 21.2
Deep Analogy 28.0130 0.9212 19.0 20.2
MPSE(Ours) 28.4128 0.9544 30.4 26.8

It suffices to show that our performance metrics exhibit
great improvements regarding PSNR and SSIM. Although
the user perceptual evaluation is subjective to individual
perspectives, we still inspect considerable improvements
over the current state-of-the-art Deep Photorealistic Trans-
fer techniques by roughly 5%.

5.2. MDIE Experiment
Pre-train Intrinsic Network Although we design our

intrinsic prediction network in a self-supervised fashion, the
actual training will still need a pre-train phase with albeto
and shading as the ground truth. Here we first pre-train the
two VAEs in our intrinsic network with MPI Sintel Dataset.
The loss in albeto, shading and reconstruction will be rebal-
anced in the pre-trained phase.
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Figure 13. Effect of the whole MPSE pipeline: In combination with DPED+ and post-processing techniques, it can be observed that the
illuminance condition has been improved and our pipeline has certain capabilities to improve the structure information like edges.

Training MDIE In this step, we use the weight of in-
trinsic network in the pre-train step, and this time we train
the whole network in a combined fashion. For the multi-
domain translation GAN, we have three datasets concerning
color, noise and texture enhancement respectively:

• Color Enhancement Dataset: We collect result cre-
ated by professional photographers’ human-retouching
techniques. This dataset contains the original RAW file
and the retouched image outputted as JPEG. The color
quality and contrast condition of the retouched image
is significantly improved.

• Denoise Dataset: We collect noise image of the same
scene from Mobile-Phones, with different ISO set-
tings. Then we use the algorithm introduced in [35] to
approximate the ground truth image with zero noise.

• Texture Enhancement Dataset: We collect high-quality
night scene images from DSLR camera, and then
we downgraded these images and created their ’low-
quality’ counterparts.This dataset is used to enhance
the image from texture and structural perspective par-
tially.

6. Conclusion
Aiming at improving the low-light mobile image quali-

ties by deep neural networks, our thesis proposed two sys-

tematic pipelines: Our first enhancement algorithm MPSE
(Multi-Phase Semantic Enhancement) initially trains an
end-to-end paired residual model to augment the structural
details and texture information of images, then performs
semantic style refinement while keeping the fidelity of the
generated image, finally utilizes post-processing techniques
like Histogram Equalization and Gamma Correction to ful-
fill human artistic appreciation. The second method MDIE
(Multi-Domain Intrinsic Enhancement) introduces the us-
age of intrinsic decomposition in the task of image en-
hancement. To facilitate the difficulty of lacking precisely-
aligned Mobile-DSLR dataset, the second method designs a
multi-domain image-to-image translation network to learn a
comprehensive enhancement transformation from partially
enhancement dataset. Both of our methods attempt to adopt
mid-level vision ideas to low-level vision and provides bet-
ter supervision in semantic or intrinsic perspective.
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